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ABSTRACT

Many scientific applications are of interest to evaluate the relative shares of influence of variables
in a given model through the change in prediction values or metrics, namely to explore the variable
importance for covariates. Researchers have proposed different approaches to investigate variable
importance for cross-sectional data with parametric and non-parametric models already. However,
this topic is less brought up in the context of longitudinal data. To tackle the problem, we introduced
a variable importance measurement (VIM), invented by Lindeman, Merenda, and Gold, for fixed
effects in the linear mixed effect model. To cooperate with the nature of cluster effects in longitudinal
data, we used marginal and conditional R2 to obtain the variable importance, which offered two
interpretations of the VIM through the improvement of R2 from the subject level and the population
level. Meanwhile, it was robust for assessing contributions to fixed effects under the presence of
multicollinearity. Throughout simulations, we showed that our proposed VIM for covariates matched
the true rank of covariates in data generation process for simulating longitudinal data.

1 Introduction

Many scientific applications are of interest to evaluate the relative shares of influence of variables in a given model

through the change in prediction values or metrics, namely to explore the variable importance for covariates [1, 2, 3].

Various approaches have been proposed to understand this problem in cross-sectional data during the past few decades

[4, 5, 6, 7, 8] and the majority of these methods were focused on or had the aid of parametric models (e.g. linear

regression). However, it was less mentioned in the literature on longitudinal data analysis. During the last few decades,

the linear mixed model has been widely used in longitudinal and cluster data analysis within lots of biomedical and

clinical studies [9, 10]. Different approaches such as regression coefficients with or without standardization, their

corresponding p-values in t-test, and p-values in F-test or variance component test with the stepwise procedure have

been widely applied to investigate intrinsic variable importance in linear regression. Since the linear mixed model is

composed of a segment of fixed effects in a parametric form, variable importance measurement in linear regression

is still applicable in a mixed model setting. However, variable importance measure based on ranking estimated

standardized coefficients and their associated p-values in t-test is suffered from a problem of inaccuracy caused by

multicollinearity, which theoretically brings up wider confidence intervals [11]. When multicollinearity occurs in

a model, the moment matrix (e.g. XTX or XTWX) may not be inverted anymore and it leads to a very small
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determinant in the moment matrix which brings up inflation in the estimated variance of coefficients [12, 13, 14, 15].

Since the estimated coefficients have been affected by multicollinearity, variable importance measure from standardized

coefficients is inapplicable as well. In general, variable importance under multicollinearity has a problem of intrinsic

ambiguity in the sense that variables "share" importance. These problems also exist in the context of the linear mixed

model and several techniques have been introduced to diagnose the illness of multicollinearity [16]. One way to

deal with multicollinearity and provide variable importance for covariates in a linear model is to consider the relative

percentage contribution of each covariate, namely, considering the average difference in R2 for each covariate Xi over

all possible combinations of a set of covariates [5, 17]. This is the LMG measure of variable importance, first proposed

by Lindeman et al. [5, 18] and expanaded by Genizi and Grömping [6, 19].

ϕi =
1

p

∑
u⊆−{i}

1(
p−1
|u|

) [R2
u+i −R2

u

]
, (1)

where p is the number of covariates, u is a subset that includes covariates from {X1, X2, ..., Xp} excluded Xi, and

|u| is the cardinality of set u [18]. Since it provides a weighted average for each subset of covariates and sums up all

improvements in R2 over all combinations, even though multicollinearity appears among covariates, the contributions

of correlated covariates will be average out. Our goal of the paper is to extend this method to a linear mixed model,

which offers two advantages – providing variable importance under multicollinearity and the interpretation of covariates’

importance with relative average percentage contributions regarding R2.In (1), we can find that the coefficient of

determination R2 plays a vital role in LMG variable importance but there is no consensus for the definition of R2 in the

linear mixed model and different version of R2 in the linear mixed model have been proposed with their corresponding

merit and problem [20, 21, 22, 23]. In our paper, we followed two types of residual-based R2 (marginal case considering

variable importance in the population and conditional case considering variable importance n the sample of people

in the dataset) proposed by Xu [21], due to their heuristic structure and similar interpretation as they are in linear

regression, and provide more discussion on R2 in the linear mixed model in later sections.

The layout of this paper is as follows. Section 2 is to provide notation and definition for linear mixed model, discuss R2

in the linear mixed model, and propose our extension of LMG type of variable importance measure in the linear mixed

model. Section 3 is used to describe our schema for simulation study and Section 4 is for the results from simulation

study. Section 5 and section 6 will be the discussion and the conclusion.

2 Variable Importance in the Linear Mixed Model

2.1 Linear Mixed Model

We consider the linear mixed model [9] as given a subject i for all i ∈ {1, 2, ...,m},

yi = Xiβ + Zibi + ϵi, (2)
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where m is the number of subjects, yi ∈ Rni is a column vector for a response variable, Xi is a ni× (p+1) fixed-effects

design matrix, Zi is a ni × q random-effects design matrix , β ∈ Rp+1 is a column vector for fixed-effects coefficients,

bi ∈ Rq is a column vector for random-effects coefficients, and ϵi ∈ Rni is a column vector for within-subject errors.

We also assume the normality for random effects and within-subject errors such that

bi ∼ Nq(0,Di) and ϵi ∼ Nni
(0,Ri),

where Di is a q × q covariance matrix for the random effects and Ri is a ni × ni covariance matrix for within-subject

errors. Without loss of generality, we assume the conditional independence for error terms Ri = σ2
ϵ Ini where Ini is an

identity matrix with dimension ni as well.

We also can stack subject-level vectors and matrices and express the linear mixed model as

Y = Xβ + Zb + ϵ, (3)

where

Y =


y1
y2
...

ym


m×1

, X =


X1

X2

...

Xm


m×(p+1)

, Z =


Z1 0 . . . 0

0 Z2 . . . 0
...

...
. . .

...

0 0 . . . Zm


m×m

,

β =


β0

β1

...

βp


(p+1)×1

, b =


b1

b2

...

bm


m×1

, and ϵ =


ϵ1

ϵ2
...

ϵm


m×1

.

In addition, the covariance matrix for b is D = diag(D1,D2, ...,Dm) and the covariance matrix for ϵ is R =

diag(R1,R2, ...,Rm). Consequentialy, we can obtain the marginal variance of Y as Var(Y) = V = ZDZT + R.

The parameters estimation in the linear mixed model (2) and (3) traditionally followed the maximum likelihood

estimation (MLE) or restricted maximum likelihood estimation (REML) [24, 25]. The empirical Bayes estimate with

EM algorithm was also feasible and equivalent for parameter estimate [9]. However, we also noticed that if REML was

applied within the context of linear regression, the R2 in linear regression will be adjusted R2 [26] so we used MLE

for parameter estimate in our simulation study. The partition of R2 is held under the initial definition of R2 instead of

adjusted R2.

2.2 Proposed R2 in Linear Mixed Model

There is a long history that using the coefficient of determination (R2) as a metric to evaluate the performance of a

regression model for cross-sectional data. However, there is no concurrence on the definition of R2 for the linear mixed
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effect model. This is partially because people less used it as a prediction model and different proposed definitions of R2

share some practical and theoretical problems [20]. In ordinary linear regression, previous literature has proposed some

criteria for assessing R2 [27, 28] and it can be summarized as a dimensionless, unit-free, and comparable measurement

of goodness-of-fit without correction of the degree of freedom and limitation of any specific model-fitting process. It

provides interpretation as explaining the variation of the response variable (Y) through explanatory variables (X). In

general, the definition of R2 characterizes as the total percentage of variation in response variable minus the ratio of

two sum of squared residuals in a fitted model and in a null model

R2 = 1− RSS

RSS0
= 1−

∑
i(yi − ŷi)

2∑
i(yi − ŷ

(0)
i )2

, (4)

where i is the index for subjects, ŷ is the prediction from a fitted model, and ŷ(0) is a value from a specific null model.

In linear regression, the null model is always described as

H0 : yi = β
(0)
0 + ϵ0i , (5)

where it is just a model with intercept term. Hence, the RSS0 =
∑

i(yi − ȳ)2 is the marginal empirical variance of

all subjects. Since (5) only includes the intercept from fixed effects in the linear mixed model, it tends to measure the

portion of reduction in residual variation explained by a set of fixed effects. Compared with R2 measured deviance

from the population-level mean in (5), it is of interest to consider the null model that includes subject-level information

and corresponding R2 can explain a portion of the reduction in residual variation explained by the subject’s response,

so the null model can be treated as

H0 : yi = β0 + bi0 + ϵi, (6)

where the null model only consists of random intercept and global intercept without any other covariates. Various

ways of calculating R2 in linear mixed model have been proposed [20, 21, 22, 29]. In general, they can be categorized

into two types, likelihood-based and residual-based R2. The likelihood-based R2 was first introduced by Kent as a

method to explain randomness in linear, generalized linear, and proportional hazard models [30, 31] but it suffered from

a problem of decreased or even negative R2 with the introduction of additional covariates [20]. Comparatively, the

residual-based R2 is more similar to the original definition in linear model with heuristic and intuitive interpretation.

Following the definition of residual-based R2 proposed by Xu [21], we use the marginal (corresponding to (5)) and

conditional (corresponding to (6)) definition of R2 to obtain the LMG variable importance, providing for people to

choose different approaches to interpret variable based on their scientific questions.

2.3 LMG Variable Importance Measure in Linear Mixed Model

The LMG measure of variable importance, first proposed by Lindeman et al. [5] and expanaded by Genizi and Grömping

[6, 19], can be expressed as

ϕi =
1

p

∑
u⊆−{i}

1(
p−1
|u|

) [R2
u+i −R2

u

]
,
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where p is the number of covariates, u is a subset that includes covariates from {X1, X2, ..., Xp} but excludes Xi, |u|

is the cardinality of set u, and R2
u+i and R2

u are adpated from the marginal or conditional R2 for fixed effects in Section

2.2. When the fixed effect Xi is excluded from model, its associated random effect, if there is one, will be excluded as

well. We also normalized ϕi for each variable over all i ∈ {1, 2, ..., p} to provide percentage version of LMG variable

importance measure in linear mixed model

Φi =
ϕi∑p
j=1 ϕj

. (7)

The LMG variable importance measure considers offering weights for subsets of covariates (u), obtaining the improve-

ments in R2 at the moment that the i-th covariate plug into the regression with a subset of covariates from u, and

averages out at all increments in R2 for Xi over all subsets involved Xi. In the context of the linear mixed model,

covariates occur in the fixed effects so this variable importance measure is designed to provide a rank for a set of fixed

effects. As Cheng et al. mentioned [32], similar to the linear model, longitudinal data was affected by multicollinearity

problem as well, which decreased the power of inference from t-test in estimated fixed effects. However, compared with

methods affected by multicollinearity, the LMG variable importance can measure the variable importance for correlated

fixed effects, since for two given correlated covariates Xi and Xj , the LMG method will go through all possible subsets

of covariates that involve Xi or Xj separately. We can find that the LMG variable importance measurement provides

a weighted average for each subset of covariates and sums up all improvements in R2 over all combinations, though

multicollinearity appears among covariates, the contributions of correlated covariates will be average out. Hence, the

contribution of Xi or Xj in explaining the variation of the response variable is evaluated independently. Meanwhile, the

averaged improvements in R2 for a fixed effect represent an averaged contribution of it to the explained the variation of

the response from populational level or person’s level.

Besides the original definition of LMG variable importance, Owen [18] pointed out that the expression of ϕi coincided

with the Shapley value in game theory [33, 34]. In cooperative game theory, when players purchase a service and create

costs related to the purchase, the Shapley value was the only way fulfilled four compelling properties that allocated cost

among the players. As Owen described [18], these four properties were

• Efficiency:
∑p

i=1 ϕi = val(1 : p);

• Symmetry: if val(u ∪ {i}) = val(u ∪ {j}) for all u ⊆ 1 : p− {i, j}, then ϕi = ϕj ;

• Dummy: if val(u ∪ {i}) = val(u) for all u ⊆ 1 : p, then ϕi = 0;

• Linearity: if valj and val′j have Shapley value ϕj and ϕ′
j respectively, then valj + val′j have Shapley value

ϕj + ϕ′
j for all j ∈ 1 : p;

where val is the value function, often chosen R2 or predicted value Ŷ, for Shapley value. These properties were

preserved in linear regression with a value function as R2.

5
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3 Data Generation for Simulation Study

We conducted a simulation study to estimate the LMG variable importance measurement for a linear mixed model

and assess its performance through the comparison with p-values from t-test for estimated coefficients of fixed effects

with and without multicollinearity appeared in fixed effects. In the case without multicollinearity, we generated a

cluster of continuous outcomes with p = 6 covariates and random intercepts were always assumed in the model.

We considered there were m = 100, 200, 400 subjects and each subject had n = 5, 7, 9 repeated measures. Since

simulated covariates for each subject i (i = 1, 2, ...,m) was a cluster denoted as Xi = [xi1, xi2, ..., xi6] where xik

was a column vector for a covarite k (k = 1, 2, ..., p), we assumed each element in xik was from Unif(0,1) and

corresponding random effect matrix was Zi. Due to continuous covariates from the same distribution, we assumed

β = [β0, β1, β2, β3, β4, β5, β6] = [1/2, 1/2, 1/2, 1/4, 1/8, 1/16, 1/32] which was under a decreasing order and

represented for a true importance of covariates and two cases of random effects, a random intercept bi0 ∼ N(0, θ)

where θ = 1 and a random intercept and a random slope for xi1 where bi = [bi0, bi1] ∼ N2(0, θI2), were assumed

for our simulation. Hence, the value of true response variable is highly determined by the top two covariates. We

assumed an error vector for each cluster i as ϵi ∼ Nn(0,Ri) where Ri = σ2In and σ2 = 1. Hence, the continuous

outcome yi for each cluster was simulated from a multinormal distribution Nn(Xiβ,Σi), where elements in the

diagonal and the off-diagonal of Σi were σ2 + θ and θ respectively (e.g. compound symmetry). In the case with

multicollinearity, the simulation schema was similar to the above and except that we only assumed random intercepts

existed. We assumed that two of covariates (X1 and X2) were highly associated with correlation ρ = 0.99 and

β = [β0, β1, β2, β3, β4, β5, β6] = [1/2, 1/2, 1/2, 1/4, 1/4, 1/8, 1/8] where correlated covariates shared the same true

coefficient. Each element in xik was generated from a normal distribution N(0, 1).

4 Result

For each combination of m and n, we first fitted the response variable using all possible combinations of covariates

(i.e. 2p combinations including a null model and full models) under the model (3). We then obtained the marginal and

conditional R2 defined in Section 2.2 corresponding to (5) and (6) for each linear mixed model and calculated the LMG

variable importance for each covariate. The p-value from t-test for each covariate in the fitted model with all covariates

was recorded as well.

In the simulation setting, the true rank of variable importance was based on the magnitude of true β. Table 1 provides

mean and standard deviation of the estimated LMG variable importance for each covariate over 100 simulations

under different combinations of the number of subjects and the number of repeated measures. The proposed variable

importance measurement for the linear mixed model can capture the true rank of variable importance regardless of the

size of the dataset. For the top two significant covariates (X1 and X2), there were only slight differences in the estimated

LMG variable importance between using marginal R2 and conditional R2 proposed by Xu [21] and they contributed a

large portion of weighted average improvements in R2 compared with other covariates. The same simulation study

6
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Table 1: 100 times simulation results for LMG variable importance from the linear mixed model with random intercepts
using MLE

(a) Mean and standard deviation of LMG variable importance for each covariate over 100 times simulation

(b) Proportion of p-value for each estimated fixed effect over 100 simulations that each fixed effect was significant at
0.05

was also performed for the linear mixed model assumed two random effects (random intercept and random slope in

X1) and the results were also aligned with Table 1 (supplementary). However, the proportion of p-value that was

significant at 0.05 for covariate X2 over 100 simulations shown in Table 1(b) was affected by the size of the dataset and

a small dataset size yielded a lower proportion of significant p-value. The performance of our proposed method was

reasonable in different simulation scenarios, and only when the sample size and cluster size were small, the performance

of the proposed method showed larger standard deviation for estimated. The residual-based R2 in the linear mixed

model required ni → ∞ to provide accurate estimation, namely the empirical estimated distribution of random effects

converges to its true distribution [31, 35]. We noticed that in the simulation study where we assumed random intercept

and random slope for X1, the estimated variable importance from models using REML resulted in negative values

for unimportant covariates (supplementary). We investigated the problem and found that the R2 proposed by Xu [21]

returned negative values when the distribution assumption for random effect was inappropriate (e.g. Hessian matrix for

random effects was not positive definite). In general, the performance of the proposed variable importance worked

better in the linear mixed model with MLE than REML.

Table 2 is the simulation study where multicollinearity existed. Since X1 and X2 were highly correlated and shared the

same true β, the simulation study disclosed that two correlated covariates in the linear mixed model had indistinguishable

7
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Table 2: 100 times simulation results for LMG variable importance from the linear mixed model with random intercepts
using MLE, where linear dependence existed between X1 and X2

(a) Mean and standard deviation of LMG variable importance for each covariate over 100 times simulation

(b) Proportion of p-value for each estimated fixed effect over 100 simulations that each fixed effect was significant at
0.05

estimated mean LMG variable importance calculated by either marginal or conditional R2 through all simulation

scenarios over 100 simulations, which provided a valid analysis to understand the importance of covariates under a high

degree of multicollinearity. However, the proportion of significant p-values over 100 simulations for two covariates X1

and X2 with a large magnitude, affected by multicollinearity, was lower than other covariates with a small magnitude,

which indicated the unstable performance of t-test on estimated coefficients in the linear mixed model.

Through simulation studies with and without multicollinearity, we noticed that the proportion of p-value that was

significant at 0.05 for a covariate which was significant in reality was sensitive to the size of a dataset and large size

dataset tended to have a higher proportion of p-value that was significant at 0.05 for a covariate which was significant in

reality. But our proposed variable importance measurement was comparatively stable and did not vary notably along

with the increment of dataset size. Besides the above simulation studies, we also checked that efficiency and linearity

properties in the Shapley value didn’t hold in the context of the linear mixed model under the R2 proposed by with null

model as (5) or (6). Even though the LMG variable importance for the linear mixed model didn’t fulfill the properties

of the Shapley value, the practical use of the LMG variable importance measure was still reasonable regarding its

advantages in dealing with multicollinearity and providing an interpretation of explaining variation in response variable

under the linear mixed model.

8
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5 Discussion

The variable importance measure in the linear mixed effect model is more complicated than linear regression. Differed

from the variable selection procedure in the linear mixed model which was largely depended on penalized likelihood

[36], the variable importance measure did not aim to select a subset of covariates from a set of them and rather provided

a rank for covariates’ contributions to explain variation in response from covariates. This procedure highly depended

on how users chose quantitative metrics to define covariates’ contributions. In our study, we used the coefficient of

determination (R2) to measure the contribution from a covariate. Two residual-based R2 (marginal and conditional) we

used to calculate the proposed variable importance measurement were different conceptually but we only saw a slight

difference in practice. We have seen that different definitions of R2 have been proposed for the linear mixed model and

we only used the one defined by Xu [31] due to its heuristic interpretation and similarity to the original R2 in the linear

model. Therefore, one can consider using alternative definitions of R2, collaborated with the procedure of the LMG

variable importance measure that we proposed, to investigate the variable importance in the linear mixed model. The

choice of R2 statistics directly affected the performance of LMG variable importance measure. Orliean and Nakagawa

[20, 23] have investigated the performance of different types of R2 in the linear mixed model under different simulation

studies and pointed out that comparatively poor performance of R2 defined by Xu. In our simulation (supplementary),

we also notified that the marginal (5) and conditional (6) R2 defined by Xu behaved unstably and resulted in negative

R2 which indicated that a fitted linear mixed model performed even worse than the null model. We tried to understand

the problem related to R2 in the linear mixed model and noticed that in the linear regression, the R2 = 1−RSS/SST

was based on the partition of the sum of squared terms

SST = SSreg +RSS =⇒ ||Y − Ȳ1||2 = ||Ŷ − Ȳ1||2 + ||Ŷ − Y||2, (8)

where Y, 1, and Ŷ (fitted values from linear regression) are column vector with length n and Ȳ is the mean of elements

in Y, but this partition of the sum of squared terms didn’t hold in the linear mixed model due to the projection matrix P

for β in the model (3)

P = V−1 − V−1X(XT V−1X)−1XT V−1 (9)

was not symmetric and idempotent. This caused the partition of the sum of squared terms in the linear mixed model

to be not unique. Hodges [37] has provided a treatment to establish a symmetric and idempotent projection matrix in

the linear mixed model, but we noticed that the LMG variable importance measure would rank not only fixed effects

but also random effects associated with clusters under Hodges’s setting. Our goal is to better understand the intrinsic

variable importance for fixed effects and therefore the variable importance for random effects is out of our scope. Since

the LMG variable importance measure mainly depended on the metrics to evaluate the contribution of each fixed effect,

to find a better and suitable metrics for the linear mixed model deserves to gauge in the future on its own and beyond

the scope of our method.

9
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Meanwhile, the restricted maximum likelihood estimation (REML) was the primary choice for the linear mixed model

(3) due to its reduction of bias in estimating variance components compared with maximum likelihood estimation

(MLE). We conducted the same simulation studies shown in Section 3 with REML (supplementary) and the result from

REML was consistent with results in Section 4. We also noticed that the REML in linear regression provided adjusted

R2 for models if we used the definition of R2 in (4) [26].

The calculation of the LMG variable importance measure was involved in building 2p models where p was the number of

covariates. Although this variable importance measure provided a conceptual method to understand covariates’ average

percentage contributions, the computational problems continued to be an obstacle especially when the dimension p was

large. In our simulation study, we only tried a limited amount of covariates but the linear mixed model with a huge

amount of covarites is worthwhile to investigate. Hence, the computation of LMG variable importance measure for

linear mixed model deserves to investigate separately in future.

6 Conclusion

In our paper, we extended the LMG variable importance measure from the linear regression to the linear mixed model

with a marginal and conditional coefficient of determination R2. They showed reasonable performance in simulation

studies and provided a new approach to investigating variable importance from the linear mixed model.
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